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Hormone sensitive lipase (HSL) has been recently implicated in diabetes and obesity, prompting attempts
to discover new HSL inhibitors. Toward this end, we explored the pharmacophoric space of HSL inhibitors
using four diverse sets of compounds. Subsequently, genetic algorithm and multiple linear regression analysis
were employed to select optimal combination of pharmacophoric models and 2D physicochemical descriptors
capable of yielding a self-consistent and predictive quantitative structure-activity relationship (QSAR) (r
) 0.822, n ) 99, F ) 11.1, rLOO

2 ) 0.521, rPRESS
2 against 23 external test inhibitors ) 0.522). Interestingly,

two pharmacophoric models emerged in the QSAR equation suggesting at least two binding modes. These
pharmacophores were employed to screen the National Cancer Institute (NCI) list of compounds and our
in-house built database of established drugs and agrochemicals. Active hits included the safe herbicidal
agent bifenox (IC50 ) 0.43 µM) and the nonsteroidal anti-inflammatory naproxen (IC50 ) 1.20 µM). Our
active hits undermined the traditional believe that HSL inhibitors should possess covalent bond-forming
groups.

1. Introduction

1.1. Hormone Sensitive Lipase. Recent years have wit-
nessed a flurry of new oral drugs for the treatment of type 2
diabetes and obesity. The impetus for developing new antidia-
betic drugs comes from the unmet need for pharmacological
tools that allow diabetic patients to achieve recommended
glucose control targets more effectively and safely.1

Elevated free fatty acids plasma levels (FFAs) are thought
to play a major role in the pathogenesis of insulin resistance
and type 2 diabetes by inhibiting glucose uptake and utilization
by muscles.2-4 Furthermore, chronic hyperglycemia is usually
accompanied by abnormalities in lipid metabolism. Both factors
prompted continued interest in the role played by FFA in the
pathogenesis of diabetes.3,5

HSLa is a neutral lipase that has broad substrate specificity;
it catalyzes the hydrolysis of triacylglycerol, diacylglycerol,
monoacylglycerol, and cholesteryl esters as well as retinyl esters.
For that reason, HSL is not only present in adipose tissues but
is also found in tissues in which cholesterol esters are stored,
e.g., adrenal cortex, ovaries, testis, and heart.6

HSL is a component of the metabolic switch between glucose
and FFAs as energy sources. Adipose HSL activity is normally
inhibited by insulin. However, HSL remains active in type 2
diabetes, despite elevated insulin levels, presumably through
loss of insulin’s inhibitory effect. The resulting fatty acid flux

stimulates inappropriate hepatic gluconeogenesis.6,7 Further-
more, high FFA levels are suspected to play a role in the
mechanisms of insulin resistance itself.8

Adipocyte HSL is composed of two major structural domains,
an N-terminal domain, which is variable between isoforms, and
a C-terminal catalytic domain, which is identical in all known
HSL isoforms. The function of the N-terminal domain is poorly
understood, still, it has been implicated in protein-protein and
protein-lipid interactions. The catalytic domain harbors the
active site, including the residues of the catalytic triad Asp703
His733, and Ser423, as well as a regulatory module including
the phosphorylation sites of HSL.9

The central role of HSL in regulating fatty acid metabolism
makes it an interesting pharmacological target for the treatment
of insulin resistance and dyslipidemic disorders where a decrease
in delivery of fatty acids to the circulation and thereby reducing
insulin resistance is desirable.6-8,10-12 During the last couple
of years, a range of different classes of HSL inhibitors have
been described by different companies. Bayer has published
work on 2H-isoxazol-5-ones.7 Aventis has published work on
oxadiazolones.13,14 Ontogene has published work on pyrrol-
opyrazinediones,12 and Novo Nordisk has published work on
carbazates,15 carbamoyltriazoles,10 and aryl boronic acids.16

The continued interest in the development of new HSL
inhibitors combined with the lack of available HSL crystal-
lographic structures and adequate computer-aided drug discovery
efforts in this area44 prompted us to explore the possibility of
developing ligand-based three-dimensional (3D) pharmacoph-
ore(s) integrated within self-consistent QSAR model for HSL
inhibitors. The pharmacophore model(s) can be used as 3D
search query(ies) to mine 3D libraries for new HSL inhibitors,
while the QSAR model helps to predict the biological activities
of the captured compounds and therefore prioritize them for in
vitro evaluation.
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We employed the HYPOGEN module from the CATALYST
software package17 to construct plausible binding hypotheses
for HSL inhibitors. Subsequently, genetic function algorithm
(GFA) and multiple linear regression (MLR) analyses were
employed to search for an optimal QSAR that combine high-
quality binding pharmacophores with other molecular descriptors
and capable of explaining bioactivity variation across a collec-
tion of diverse HSL inhibitors. The optimal pharmacophores
were subsequently used as 3D search queries to screen NCI list
of compounds and our in-house built structural database of
established drugs and agrochemicals for new HSL inhibitors.

CATALYST models drug-receptor interaction using infor-
mation derived only from the drug structure.17-25 HYPOGEN
identifies a 3D array of a maximum of five chemical features
common to active training molecules, which provides a relative
alignment for each input molecule consistent with their binding
to a proposed common receptor site. The chemical features
considered can be hydrogen bond donors and acceptors (HBDs
and HBAs), aliphatic and aromatic hydrophobes, positive and
negative charges, positive and negative ionizable groups, and
aromatic planes. The conformational flexibility of training
ligands is modeled by creating multiple conformers, judiciously
prepared to emphasize representative coverage over a specified
energy range. CATALYST pharmacophores have been used as
3D queries for database searching and in 3D-QSAR studies.26-31

2. Results and Discussion

CATALYST enables automatic pharmacophore construction
by using a collection of molecules with activities ranging over
a number of orders of magnitude. CATALYST pharmacophores
(hypotheses) explain the variability of bioactivity with respect
to the geometric localization of the chemical features present
in the molecules used to build it. The pharmacophore model
consists of a collection of features necessary for the biological
activity of the ligands arranged in 3D space.

Different hypotheses were generated for a series of HSL
inhibitors. A total of 122 compounds were used in this study
(Figure 1 and Table 1). Four training subsets were selected from
the collection (Table 2). Each subset consisted of inhibitors of
wide structural diversity. The biological activity in the training
subsets spanned from 3.5 to 4.0 orders of magnitude. Genetic
algorithm and multiple linear regression statistical analysis were
subsequently employed to select an optimal combination of
complementary pharmacophores capable of explaining bioac-
tivity variations among all collected inhibitors.

2.1. Data Mining and Conformational Coverage. The
literature was surveyed to collect many structurally diverse
reported HSL inhibitors (1-122, see Table 1 and Figure 1).7,10

The 2D structures of the inhibitors were imported into CATA-
LYST and converted automatically into plausible 3D single
conformer representations. The resulting single conformer 3D
structures were used as a starting point for conformational
analysis and in the determination of various molecular descrip-
tors for QSAR modeling.

The conformational space of each inhibitor was extensively
sampled utilizing the poling algorithm employed within the
CONFIRM module of CATALYST.22 Conformational coverage
was performed employing the “Best” module to ensure extensive
sampling of conformational space. Efficient conformational
coverage guarantees minimum conformation-related noise during
pharmacophore generation and validation stages. Pharmacophore
generation and pharmacophore-based search procedures are
known for their sensitivity to inadequate conformational sam-
pling within training compounds.32

2.2. Exploration of HSL Pharmacophoric Space. CATA-
LYST-HYPOGEN enables automatic pharmacophore construc-
tion by using a collection of at least 16 molecules with
bioactivities spanning over 3.5 orders of magnitude.17,21-25

Accordingly, as we have an informative list of 122 HSL
inhibitors of evenly spread bioactivities over more than 3.5
orders of magnitude, this prompted us to employ CATALYST-
HYPOGEN to identify possible pharmacophoric binding modes
assumed by different HSL inhibitors.

HYPOGEN implements an optimization algorithm that evalu-
ates large number of potential binding models for a particular
target through fine perturbations to hypotheses that survived the
constructive and subtractive phases of the modeling algorithm
(see Section 4.1.4, Pharmacophoric Hypotheses Generation in
the Experimental Section).21 The extent of the evaluated
pharmacophoric space is reflected by the configuration (config)
cost calculated for each modeling run. It is generally recom-
mended that the config cost of any HYPOGEN run not exceed

Figure 1. The chemical scaffolds of training compounds; the detailed
structures are as in Table 1.
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Table 1. Structures of HSL Inhibitors Utilized in Modeling; the Corresponding Scaffolds are in Figure 1

no. R1 R2 cyclic amine X IC50(nM)

1 S-4-chlorophenyl 6
2 SO2(4-chloro)phenyl 35
3a S-phenyl 6
4a benzyl 5
5 CH3 13
6 ethyl 18
7 n-butyl 7
8 isopropyl 2
9 isobutyl 5
10 tert-butyl 14
11 cyclopentyl 6
12a cyclohexyl 11
13 4-tetrahydropyranyl 71
14 4-tetrahydrothiopyrany 11
15 4-tetrahydrothiopyranyl dioxide 55
16 CH2CH2OCH3 10
17 CH2CH2OPh 4
18 CH2(N-CH3)-2-indolyl 17
19 phenyl 14
20a H tert-butyl >1000
21 H phenyl >1000
22 H 8-quinolinyl N/Ab

23a H CH2cyclohexyl 72
24 CH3 cyclohexyl 9
25 CH3 benzyl 5
26 CH3 (2-fluoro)benzyl 4
27 CH3 (3-fluoro)benzyl 5
28 CH3 (4-fluoro)benzyl 111
29 CH3 (4-methyl)benzyl 408
30a CH3 CH2(2-furanyl) 4
31 CH3 CH2(2-thienyl) 2
32 CH3 CH2CH2CN >1000
33 CH3 CH2CH2Ph 180
34 CH3 CH2CH2 (2-indolyl) N/Ab

35 CH3 CH2CONH2 >1000
36a CH3 phenyl 7
37 CH3 4-chlorophenyl 17
38 CH3 2-pyridyl 240
39a ethyl ethyl 1400
40 isopropyl isopropyl N/Ab

41 pyrrolidine 15
42 2,5-dimethylpyrrolidine N/Ab

43 3-pyrroline 72
44 indoline >1000
45 tetrahydroquinoline 60
46 piperazine >1000
47 N-methylpiperazine 314
48 N-benzylpiperazine 65
49 N-phenylpiperazine 6
50 N-(2-chlorophenyl)piperazine 30
51 N-(2-pyrimidinyl) piperazine 67
52 morpholine 52
53a thiomorpholine 8
54a homopiperidine 62
55 azacyclooctane 900
56 isopropyl 2-methyl 93
57a isopropyl 3-(R)-methyl 20
58 isopropyl 3-(S)-methyl 3
59a isopropyl 3-hydroxymethyl 180
60a isopropyl 3-CON(Et)2 >1000
61a isopropyl 3-CO2Et 28
62 isopropyl 4-methyl 6
63 n-butyl 4-methyl 1
64 isobutyl 4-methyl 3
65 cyclohexyl 4-methyl 4
66 CH2CH2OEt 4-methyl 3
67 4-tetrahydrothiopyranyl 4-methyl 6
68 isopropyl 4-benzyl 102
69 isopropyl 4-phenyl 12
70 isobutyl 4-phenyl 10
71 cyclopentyl 4-phenyl 24
72 CH2CH2OCH3 4-phenyl 11
73 isopropyl 4-(3-fluorophenyl) 12
74 CH2CH2OCH3 4-(3-fluorophenyl) 20
75 CH2CH2OCH3 4-(3-methylphenyl) 23
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17 (corresponding to two17 hypotheses to be assessed by
CATALYST) to guarantee thorough analysis of all models.22

The size of the investigated pharmacophoric space is a
function of training compounds, selected input chemical features,
and other CATALYST control parameters.22 Restricting the
extent of explored pharmacophoric space should improve the
efficiency of optimization via allowing effective evaluation of
limited number of pharmacophoric models. On the other hand,
extensive restrictions imposed on the pharmacophoric space
might reduce the possibility of discovering optimal pharma-
cophoric hypotheses, as they might occur outside the “bound-
aries” of the pharmacophoric space.

Therefore, we decided to explore the pharmacophoric space
of HSL inhibitors under reasonably imposed “boundaries”
through 16 HYPOGEN automatic runs conduct by employing
four carefully selected training subsets (i.e., from the collected
compounds): subsets A, B, C, and D in Table 2. The training
compounds in these subsets were selected in such away to
guarantee maximal 3D diversity and continuous bioactivity
spread over more than 3.5 logarithmic cycles. Furthermore, the
training inhibitors were selected in such a way that differences
in their anti-HSL bioactivities are primarily attributable to the
presence or absence of pharmacophoric features (e.g., HBA or

Table 1. Countinued

no. R1 R2 cyclic amine X IC50(nM)

76 isopropyl 4-(4-methylphenyl) 37
77 isopropyl 4-(4-CF3-phenyl) 160
78 isopropyl 4-(4-tert-bu-phenyl) 480
79 isopropyl 4-COphenyl 250
80 isopropyl 4-CO2Et 6
81 isopropyl 4-hydroxy 166
82 isopropyl 4-keto 200
83 isopropyl 4-CON(CH3)2 >1000
84 isopropyl 4-(4-CH3-2-isoxazoyl) 28
85 isopropyl 4-(5-CH3-2-oxadiazolyl) >1000
86a isopropyl 4-N-piperidinyl N/Ab

87 isopropyl 2,5-dimethyl 460
88 isopropyl 3,3-dimethyl 7
89a isopropyl 3,5-dimethyl 326
90 isopropyl 4-CN-4-phenyl >1000
91 isopropyl 4-OH-4-phenyl >1000
92 4-chlorophenyl methyl 0.353
93 4-chlorophenyl ethyl 3.71
94 4-chlorophenyl propyl 1.06
95 4-methylphenyl methyl 0.53
96 4-methylphenyl 1,1,1-trifluoro-ethyl 10.59
97 4-methylphenyl hexane 882.35
98a 4-trifluoromethoxyphenyl methyl 1.76
99a 4-methoxyphenyl methyl 15.88
100 4-trifluoromethylphenyl methyl 1.76
101 biphenyl methyl 26.47
102 naphthalene methyl 35.29
103 vinyl-benzene methyl 882.35
104a Cl methyl O 35.29
105a Cl 1,1,1-triflouro-ethyl O 158.82
106a Cl hexane O 882.35
107 methyl methyl O 70.59
108 methoxy ethyl O 158.82
109 Cl methyl CH2 1.76
110 Cl 1,1,1-triflouro-ethyl CH2 7.06
111 Cl methylcyclopropyl CH2 3.53
112 Cl hexane CH2 882.35
113a Cl methyl 2.82
114 Cl 1,1,1-triflouroethyl 3
115 Cl methylcyclopropyl 1.09
116 Cl hexane 7.06
117 methyl methyl 1.76
118a methyl hexane 12.35
119 trifluoromethoxy methyl 4.41
120 methoxy ethyl 5.29
121 19.41
122 0.41

a These compounds were employed as the external testing subset in QSAR modeling. b N/A ) not active.

Table 2. Training Subsets Employed in Exploring the Pharmacophoric
Space of HSL Inhibitors; Numbers Correspond to Compounds in Table
1 and Figure 1

training
subsets most activea moderately active

least
activeb

A 109, 114, 122 3, 17, 19, 23, 24, 26,
30, 36, 37, 38, 45, 51,
52, 68, 80, 83, 99, 102,
103, 118, 119, 121

39, 40

B 8, 31, 92, 109, 113 1, 6, 17, 20, 33, 36,
49, 70, 80, 103, 104, 111

39, 40

C 66, 92, 98, 115 2, 13, 19, 21, 23, 24,
30, 32, 47, 48, 49, 61,
81, 83, 87, 90, 101,
103, 104, 120, 121

39, 40

D 31, 66, 122 1, 13, 16, 18, 19,
21, 28, 33, 43, 51,
61, 69, 84, 121

39, 40

a Potency categories as defined by eqs 2 and 3 in Section 4.1.4,
Pharmacophoric Hypotheses Generation under the Experimental Section.
b Potency categories as defined by equations 2 and 3 in Section 4.1.4,
Pharmacophoric Hypotheses Generation under the Experimental Section.
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HBD or Hbic or RingArom) rather than steric shielding and/or
bioactivity-enhancing or -reducing auxiliary groups (e.g., elec-
tron donating or withdrawing groups). We gave special emphasis
to the 3D diversity of the most active compounds in each
training subset (Table 2) because of their significant influence
on the extent of the evaluated pharmacophoric space during the
constructive phase of HYPOGEN algorithm (see Section 4.1.4,
Pharmacophoric Hypotheses Generation in the Experimental
Section).

Guided by our reasonably restricted pharmacophore explora-
tion concept, we restricted the software to explore pharmacoph-
oric models incorporating from zero to one HBD feature, and
from zero to three HBA, Hbic, and RingArom features instead
of the default range of zero to five (Table 3). Furthermore, we
instructed HYPOGEN to explore only four- and five-featured
pharmacophores, i.e., ignore models of lesser number of features
as shown in Table 3. The later restriction has the advantage of
narrowing the investigated pharmacophoric space and represent-
ing the feature-rich nature of known HSL ligands.

In each run, the resulting binding hypotheses were automati-
cally ranked according to their corresponding “total cost” value,
which is defined as the sum of error cost, weight cost, and

configuration cost (see Section 4.1.5, Assessment of the Gener-
ated Hypotheses in the Experimental Section).17,21-25 Error cost
provides the highest contribution to total cost and it is directly
related to the capacity of the particular pharmacophore as 3D-
QSAR model, i.e., in correlating the molecular structures to the
corresponding biological responses.17,21-25 HYPOGEN also
calculates the cost of the null hypothesis, which presumes that
there is no relationship in the data and that experimental
activities are normally distributed about their mean. Accordingly,
the greater the difference from the null hypothesis cost (residual
cost, Table 4), the more likely that the hypothesis does not reflect
a chance correlation.17,21-25

An additional validation technique, known as Cat.Scramble,
was recently introduced into CATALYST.17 This procedure is
based on Fischer’s randomization test.33 In this test, the
biological data and the corresponding structures are scrambled
several times and the software is challenged to generate
pharmacophoric models from the randomized data. The confi-
dence in the parent hypotheses (i.e., generated from unscrambled
data) is lowered proportional to the number of times the software
succeeds in generating binding hypotheses from scrambled data
of apparently better cost criteria than the parent hypotheses (see

Table 3. Training Sets and CATALYST Run Parameters Employed for Exploring HSL Pharmacophoric Space

run no.
training

seta
number of

training compounds
selected input features:

types and rangesb
no. of
output

spacing
parameterc

1 A 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 100
2 A 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 100
3 A 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 300
4 A 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 300
5 B 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 100
6 B 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 100
7 B 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 300
8 B 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 300
9 C 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 100
10 C 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 100
11 C 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 300
12 C 27 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 300
13 D 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 100
14 D 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 100
15 D 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 4-5 300
16 D 19 HBA (0-3), HBD (0-1), Hbic (0-3), RingArom (0-3) 5-5 300

a The letters correspond to training sets in Table 2. b HBA: hydrogen bond Acceptor, HBD: hydrogen bond donor, RingArom: ring aromatic, Hbic:
hydrophobic, the allowed ranges of input features are in brackets. c Other parameters were set to their default values.

Table 4. Performance of the Best Representatives of Clustered Pharmacophore Hypotheses Generated for HSL

training
seta runb hypothesesc

pharmacophoric
features in

generated hypotheses
total
cost

cost of
null hypothesis

residual
costd Re F-statisticf Cat.Scramble (%)

A 1 1g HBA, 2×Hbic, RingArom 126.6 143.5 16.9 0.80 1.2 90
3 1 HBA, 2×Hbic, RingArom 124.7 143.5 18.8 0.80 11.2 85
4 1 2×HBA, 3×Hbic 124.5 143.5 19.0 0.77 2.8 95

B 5 6 2×Hbic, 2×RingArom 97.5 120.4 22.9 0.83 6.8 90
7 HBA, 2×Hbic, RingArom 98.7 120.4 21.7 0.81 2.8 85

7 5 HBA, 2×Hbic, RingArom 96.3 120.4 24.1 0.83 16.4 90
8h HBA, 3×Hbic, RingArom 97.4 120.4 23.0 0.81 12.4 85

8 8 HBA, 3×Hbic, RingArom 98.3 120.4 22.1 0.77 0.2 95

C 9 3 HBA, 2×Hbic, RingArom 133.4 158.8 25.4 0.79 2.9 90
4h 2×HBA, Hbic, RingArom 133.4 158.8 25.4 0.78 14.4 90

11 1 HBA, Hbic, 2× RingArom 129.3 158.8 29.5 0.81 13.3 95
3 HBA, Hbic, 2× RingArom 131.8 158.8 27.0 0.79 11.3 95

D 15 1 HBA, 2×Hbic, RingArom 85.4 102.5 17.1 0.90 2.8 85
16 2 HBA, 3×Hbic, RingArom 90.0 102.5 12.5 0.74 0.5 85

a Correspond to training sets in Table 2. b Correspond to runs in Table 3. c Best models from their respective clusters, as judged based on F-statistic. d The
difference between the total cost and the cost of the corresponding null hypotheses. e The correlation coefficients between bioactivity estimates and bioactivities
of corresponding training set compounds. f Fischer statistic calculated based on the linear regression between the fit values of collected inhibitors (1-122,
Table 1, and Figure 1) against pharmacophore hypothesis (employing the “best fit” option and eq (5)) and their respective anti-HSL bioactivities. g Rank of
each hypothesis in each particular run by CATALYST. h Bolded pharmacophores emerged in the best QSAR equations (bolded).
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Section 4.1.5, Assessment of the Generated Hypotheses in the
Experimental Section).

Eventually, 160 pharmacophore models emerged from 16
automatic HYPOGEN runs, out of which only 71 models
illustrated confidence levels g85%. These successful models
were clustered into 14 groups, and their best representatives,
as judged based on their significance F-values (14 models, see
Section 4.1.6, Clustering of the Generated Pharmacophore
Hypotheses), were used in subsequent QSAR modeling (as in
Table 4). Clearly, from Table 4, the representative models shared
comparable features and acceptable statistical success criteria.
However, their residual costs were generally less than recom-
mended (i.e., 40),17 as can be noticed in Table 4. This was one
of the main factors that prompted us to explore the pharma-
cophoric space of HSL inhibitors using four training subsets
and several HYPOGEN configurations.

Emergence of several statistically comparable pharmacophore
models suggests the ability of HSL ligands to assume multiple
pharmacophoric binding modes within the binding pocket.
Therefore, it is quite challenging to select any particular
pharmacophore hypothesis as a sole representative of the binding
process.

2.3. QSAR Modeling. Pharmacophoric hypotheses are im-
portant tools in drug design and discovery as they provide
excellent insights into ligand-macromolecule recognition and
they can be used to mine for new biologically interesting
scaffolds. However, their predictive value as 3D-QSAR models
is usually limited by steric shielding and bioactivity-enhancing
or -reducing auxiliary groups.24 This point combined with the
fact that pharmacophore modeling of HSL inhibitors furnished
several binding hypotheses of comparable success criteria and
mediocre residual costs (Table 4) prompted us to employ
classical QSAR analysis to search for the best combination of
pharmacophore(s) and other 2D descriptors capable of explain-
ing bioactivity variation across the whole list of collected
inhibitors (1-122, Table 1 and Figure 1), which should enhance
the statistical significance of any QSAR-selected pharmacophore
models. We employed genetic function approximation and
multiple linear regression QSAR (GFA-MLR-QSAR) analysis
to search for an optimal QSAR equation(s).

GFA-MLR-QSAR selects optimal descriptor combinations
based on the Darwinian concept of genetic evolution whereby
the statistical criteria of regression models from different
descriptor combinations (chromosomes) are employed as fitness
criteria.17 GFA-MLR-QSAR analysis was employed to explore
various combinations of pharmacophores and other structural
descriptors and to evaluate their statistical properties as predic-
tive QSAR models.

The fit values obtained by mapping the 14 representative
hypotheses against all collected HSL inhibitors (1-122, Table
1 and Figure 1) were enrolled as independent variables (genes)
in a cycle of GFA-MLR-QSAR analysis over 30000 iterations
employing Friedman’s LOF fitness criterion (see Section 4.1.7,
QSAR Modeling in the Experimental Section).34,35 However,

because it is essential to access the predictive power of the
resulting QSAR models on an external set of inhibitors, we
randomly selected 23 molecules (marked with footnote a in
Table 1, see Section 4.1.7, QSAR Modeling in the Experimental
Section) and employed them as external test molecules for
validating the QSAR models (rPRESS

2 ). Moreover, all QSAR
models were cross-validated automatically using the leave-one-
out cross-validation in CERIUS2.34,35

Table 5 shows the statistical criteria of the resulting top-
ranking QSAR models. Surprisingly, the optimal QSAR (model
C in Table 5) required the pharmacophore fit values to be in
quadratic forms to access significant extrapolatory prediction
against the external test set. Equation 1 shows the details of
the optimal QSAR model. Figure 2 shows the corresponding
scatter plots of experimental versus estimated bioactivities for
the training and testing inhibitors.

log(1 ⁄ IC50)) 4.97+ 9.53 × 10-3(Hypo8 ⁄ 7)2 +
27.50 × 10-3(Hypo4 ⁄ 9)2 - 1.00 × 10-6(JursPNSA2)2-

0.74(AtypeN68)2 - 0.43(AtypeN72)2 - 1.24(AtypeN74)2-
2.38 × 10-2(AtypeH51)2 - 3.28(AtypeC41)2 - 0.40(AtypeC8)2-

18.67 × 10-3(SssO)2 - 5.85 × 10-3(SsCH3)2 - 11.02 × 10-3(SsOH)2-
0.15(SssNH)2 - 0.25(SaaaC)2-

2.08 × 10-2(Shadow-Ylength)2 - 0.17(Shadow-nu)2

r99 ) 0.82,F-statistic) 11.10,rBS
2 ) 0.69,rLOO

2 ) 0.52,rPRESS(23)
2 ) 0.52

(1)

where r99 is the correlation coefficient against 99 training
compounds, rLOO

2 is the leave-one-out correlation coefficient,
rBS

2 is the bootstrapping regression coefficient, and rPRESS
2 is the

predictive r2 determined for the 23 test compounds.34,35 Hypo8/7
and Hypo4/9 represent the fit values of the training compounds
against these two pharmacophores as calculated from eq 5 (see
Section 4.1.5, Assessment of the Generated Hypotheses).
JursPNSA2 is the total charge weighted partial negatively
charged molecular surface area (obtained by multiplying the
partial negative solvent-accessible surface area by the total
negative charge). AtypeN68, AtypeN72, AtypeN74, AtypeH51,
AtypeC8, and AtypeC41 are atom-type-based AlogP descriptors.
SsOH, SssO, SsCH3, SssNH, and SaaaC are the electrotopo-
logical sum descriptors for hydroxyl, ether oxygen, methyl,
secondary amine, and aromatic carbons, respectively. Shadow
descriptors are geometric descriptors that characterize the shape
of the molecules; Shadow-Ylength represents the length of
molecule in the Y dimension, while Shadow-nu represents the
ratio between the largest to smallest dimensions in a molecule.34

The emergence of two orthogonal pharmacophoric models
(Hypo8/7 and Hypo4/9, cross-correlation r2 ) 0.54) in eq 1
suggests that they represent two complementary binding modes
accessible to ligands within the binding pocket of HSL, which
means that one of the pharmacophores can optimally explain
the bioactivities of some training inhibitors, while the other
explains the remaining inhibitors. Similar conclusions were
reached about the binding pockets of other targets, e.g., factor

Table 5. Statistical Results of the Scanned QSAR Models

model termsa r(99)
b F-value r(LOO)

2 c r(BS)
2 d r(PRESS)

2 e PRESSf pharmacophoric terms in QSAR modelg

A 15 0.830 13.385 0.562 0.691 0.487 11.191 Hypo4/9
B 20 0.852 11.083 0.534 0.728 0.477 11.419 Hypo8/7, Hypo4/9
Cg 17 0.822 11.104 0.521 0.685 0.522 10.437 Hypo8/7,Hypo4/9
D 21 0.900 16.475 0.531 0.793 0.497 10.976 Hypo8/7, Hypo4/9

a Number of explanatory terms including the intercept. b Noncross-validated correlation coefficient for 99 training compounds. c Cross-validation correlation
coefficients determined by the leave-one-out technique. d Bootstrapping correlation coefficient. e Predictive r2 determined for the 23 test compounds. f The
sum of squared deviations between predicted and actual activity values for every molecule in the test set of 23 compounds. g This QSAR equation was
selected to predict the HSL inhibitory activities of the captured hits as it yielded the best statistical criteria.

DiscoVery of Potent Hormone SensitiVe Lipase Inhibitors Journal of Medicinal Chemistry, 2008, Vol. 51, No. 20 6483



Xa, GSK-3�, and Mur F, based on the emergence of several
orthogonal binding pharmacophores in the corresponding op-
timal QSAR models.27-29

Figures 3 and 4 show Hypo4/9 and Hypo8/7 and how they
map training compound 115 (IC50 ) 1.09 nM) and the most
potent hit compound 123 (IC50 ) 0.214 µM, see below), while
Table 6 shows the X, Y, and Z coordinates of the two
pharmacophores.

Emergence of the two Pharmacophore models in quadratic
format in eq 1 suggests that ligand/HSL affinity is more sensitive
to fitting the pharmacophoric models at higher fit values
compared to lower values, i.e., misalignment among the
attracting moieties within the complex drastically reduce ligand/
HSL affinities, suggesting that ligand binding to HSL is
extremely sensitive to minor misalignments between attracting
moieties within the complex.

Emergence of electrotopological and Shadow descriptors in
eq 1 illustrate a certain role played by the ligands’ topology in
the binding process. However, despite their predictive signifi-
cance, their information content is quite obscure. Nevertheless,
emergence of JursPNSA2 in eq 1 associated with a negative
regression coefficient suggests an inverse relationship between

ligand/HSL affinity and the ligands’ negative charges. We
believe this trend is explainable by the fact that ionic groups
favor hydration over docking into the binding site.

2.4. Addition of Exclusion Volumes. Although ligand-based
pharmacophores serve as excellent tools to probe ligand/
macromolecule recognition and as useful 3D QSAR models and
search queries, they lack steric constrains necessary to define
the size of the binding pocket. This liability renders pharma-
cophoric models rather promiscuous. Therefore, we decided to
complement our QSAR-selected pharmacophores with exclusion
spheres employing the HipHop-REFINE module implemented
within CATALYST.17 Excluded volumes resemble sterically
inaccessible regions within the binding site (see Section 4.1.8,
Addition of Exclusion Volumes in the Experimental Section).17,36

The fact that the optimal QSAR model (eq 1) revealed two
orthogonal pharmacophoric models, indicative of at least two
distinct binding modes, prompted us to carefully select two
structurally diverse training subsets for HipHop-REFINE mod-
eling, E and F, to add exclusion spheres for Hypo8/7 and Hypo4/
9, respectively (Tables 7 and 8). The training compounds were
selected in such a way that the bioactivities of weakly active

Figure 2. Experimental versus (A) fitted (99 compounds, rLOO
2 ) 0.521) and (B) predicted (23 compounds, rPRESS

2 ) 0.522) bioactivities (expressed
in nM concentrations) calculated from the best QSAR model eq 1. The solid lines are the regression lines for the fitted and predicted bioactivities
of training and test compounds, respectively, whereas the dotted lines indicate the 1.0 log point error margins.
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compounds are explainable by steric clashes with the binding
pocket. Figures 3b and 4b show sterically refined versions of
Hypo4/9 (78 added exclusion volumes) and Hypo8/7 (99 added
exclusion volumes), respectively.

2.5. In Silico Screening and Subsequent in Vitro
Evaluation. The proposition that Hypo8/7 and Hypo4/9 are
complementary, and therefore represent different binding modes
within the binding pocket, prompted us to employ their sterically
refined versions (i.e., with exclusion volumes, Figures 3 and 4)
as 3D search queries against two available 3D flexible structural
databases, namely the NCI list of compounds (238819 com-
pounds) and our in-house built database of known drugs and
agrochemicals (2602 compounds). Collectively, Hypo4/9 and

Hypo8/7 captured 9608 hit compounds. Hits are defined as those
compounds that have their chemical groups spatially overlap
(map) with corresponding features within the particular phar-
macophoric model. Hypo4/9 captured 2523 hits from both
databases: 2506 hits from the NCI and 17 hits from the drugs
and agrochemicals list. NCI hits (2506) were subsequently
filtered based on Lipinski’s and Veber’s rules,37,38 leaving a
reduced list of 2354 compounds. On the other hand, Hypo8/7
captured 7085 compounds from both databases: 6957 hits from
the NCI database and 128 hits from our drugs and agrochemicals
list. Again, the NCI list of hits (6957) was shortened to 5910
compounds based on Lipinski’s and Veber’s rules. Captured

Figure 3. Hypo4/9. (A) Pharmacophoric features of the binding model: HBA as green vectored spheres, Hbic as blue spheres, and RingArom as
orange vectored spheres; (B) Hypo4/9 with exclusion volumes (gray spheres); (C) Hypo4/9 fitted against 115 (Table 1 and Figure 1, IC50 ) 1.09
nM); (D) The chemical structures of compound 115; (E) Hypo4/9 fitted against the hit 123 (Table 9, IC50 ) 0.214 µM); (F) The chemical structure
of 123.
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hits from our drug and agrochemical list of compounds were
left without postfiltration by Lipinski’s or Veber’s rules.

The remaining hits were fitted against Hypo4/9 and Hypo8/7
(without exclusion volumes), and their fit values were substituted
in QSAR eq 1 to determine their predicted bioactivities. The
highest-ranking available hits (61 compounds, either purchased
commercially or provided kindly from the NCI) were evaluated
in vitro against HSL at 1 or 10 µM concentrations. However,
37 compounds were found to be active HSL inhibitors. Figure
5 and Table 9 show the active hits and their corresponding
estimated and experimental anti-HSL bioactivities. Hits of
inhibitory percentages g50% were further tested to determine
their IC50 values against HSL. Interestingly, their corresponding

dose/response regression lines illustrated excellent correlation
coefficients, strongly suggestive of nonpromiscuous inhibitory
behavior.

Clearly, from Figure 5 and Table 9, our active hits emphasized
diphenyl ethers as promising anti-HSL scaffold for subsequent
optimization. Although the HSL inhibitory potential of this
scaffold was recently highlighted,11 our active hits undermined
the previous belief that active HSL inhibitors should include
covalent-bond forming groups, e.g., carbamate.7,10,12-16 This
conclusion is particularly evident in compounds 123, 125, 133,
148 (bifenox), 149, 150, 151, and 152 as well as in the related
isosteres 155 and 159. The herbicidal agent bifenox (IC50 )
0.43 µM) and the nonsteroidal anti-inflammatory naproxen (157,

Figure 4. Hypo8/7. (A) The pharmacophoric features of the binding model: HBA as green vectored spheres, Hbic as blue spheres, and RingArom
as orange vectored spheres; (B) Hypo8/7 with exclusion volumes (gray spheres); (C) Hypo8/7 fitted against 115 (Table 1 and Figure 1, IC50 ) 1.09
nM); (D) The chemical structures of compound 115; (E) Hypo8/7 fitted against the hit 123 (Table 9, IC50 ) 0.214 µM); (F) The chemical structure
of 123.
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IC50 ) 1.20 µM) are particularly interesting due to their
favorable toxicity profiles39 and therefore can serve as excellent
starting leads for subsequent optimization.

It must be remembered that, although we employed rat HSL
to validate our hits, there is significant homology between rat
and human HSL (83% identity) to robustly conclude the validity
of our hits against human HSL.40

3. Conclusion

HSL inhibitors are currently considered as potential treatments
for diabetes and obesity. The pharmacophoric space of HSL
inhibitors was explored via four diverse sets of inhibitors and
using CATALYST-HYPOGEN to identify high quality binding
model(s). Subsequently, genetic algorithm and multiple linear
regression analysis were employed to access optimal QSAR
model capable of explaining anti-HSL bioactivity variation
across 122 collected HSL inhibitors (r ) 0.822, F ) 11.104,
rLOO
2 ) 0.521, rPRESS

2 against 23 external test inhibitors ) 0.522).

Two pharmacophoric models emerged in the QSAR equation,
suggesting the existence of at least two distinct binding modes
accessible to ligands within HSL binding pocket.

The QSAR equation and the associated pharmacophoric
models were experimentally validated by the identification
of several potent HSL inhibitors retrieved via in silico mining
of two structural databases, namely the NCI list of compounds
and our in-house built structural database of established drugs
and agrochemicals. One of the potent inhibitors is the
herbicidal agent bifenox (148, IC50 ) 0.43 µM). Our results
suggest that the combination of pharmacophoric exploration
and QSAR analyses can be useful tool for finding new HSL
inhibitors.

4. Experimental Section

4.1. Molecular Modeling. 4.1.1. Software and Hardware.
The following software packages were utilized in the present
research: (1) CATALYST (Version 4.11), Accelrys Inc. (www.ac-

Table 6. Pharmacophoric Features and Corresponding Weights, Tolerances, and 3D Coordinates of Hypo8/7a and Hypo4/9b

chemical features

model definitions HBA Hbic Hbic Hbic RingArom

Hypo8/7a weights 2.39102 2.39102 2.39102 2.39102 2.39102
tolerances 1.60 2.20 1.60 1.60 1.60 1.60 1.60
coordinates X 0.29 -0.91 -3.94 0.04 -3.54 -1.15 -0.26

Y 1.10 1.73 -7.45 3.61 -3.84 -1.40 -0.58
Z 2.84 5.52 0.97 -0.01 0.28 0.72 -2.03

model definitions HBA HBA Hbic RingArom

Hypo4/9b weights 2.07464 2.07464 2.07464 2.07464
tolerances 1.60 2.20 1.60 2.20 1.60 1.60 1.60
coordinates X -0.88 -0.63 2.97 5.66 2.70 -1.61 -2.42

Y -2.03 -4.77 -2.60 -3.95 3.64 -1.34 -1.94
Z -1.02 0.27 -0.07 -0.48 -2.18 1.99 -0.83

a Hypo8/7 is hypothesis number 8 generated in run number 7. b Hypo4/9 is hypothesis number 4 generated in run number 9.

Table 7. Training Subset E Used for Adding Excluded Spheres for Hypo8/7 Using HIPHOP-REFINE Module of CATALYST

compda
IC50

(nM)
principal

value MaxOmitFeatb compdb
IC50

(nM)
principal

value MaxOmitFeatb

17 4.00 2 0 52 52 0 1
63 1.00 2 0 54 62 0 1
64 3.00 2 0 55 900 0 1
66 3.00 2 0 56 93 0 1
92 0.353 2 0 59 180 0 1
93 3.71 2 0 68 102 0 1
94 1.06 2 0 76 37 0 1
95 0.53 2 0 77 160 0 1
98 1.76 2 0 78 480 0 1
100 1.76 2 0 79 250 0 1
109 1.76 2 0 83 >1000 0 1
111 3.53 2 0 85 >1000 0 1
113 2.82 2 0 87 460 0 1
114 3.00 2 0 89 326 0 1
115 1.09 2 0 90 >1000 0 1
117 1.76 2 0 91 >1000 0 1
13 71.00 0 1 103 882.35 0 1
20 >1000 0 1 105 158.82 0 1
21 >1000 0 1 108 158.82 0 1
22 N/Ac 0 1 15 55 0 2
28 111 0 1 32 >1000 0 2
29 408 0 1 34 N/Ac 0 2
33 180 0 1 35 >1000 0 2
38 240 0 1 39 1400 0 2
43 72 0 1 40 N/Ac 0 2
44 >1000 0 1 42 N/Ac 0 2
45 60 0 1 46 >1000 0 2
47 314 0 1 81 166 0 2
48 65 0 1 82 200 0 2
51 67 0 1 86 N/Ac 0 2

a Compounds’ numbers are as in Table 1 and Figure 1. b MaxOmitFeat: maximum omitted features. c N/A: not active.
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celrys.com), USA; (2) CERIUS2 (Version 4.10), Accelrys Inc.
(www.accelrys.com), USA; (3) CS ChemDraw Ultra 6.0, Cam-
bridge Soft Corp. (http:// www.cambridgesoft.Com), USA. Phar-
macophore and QSAR modeling studies were performed using
CATALYST (HYPOGEN module) and CERIUS2 software suites
from Accelrys Inc. (San Diego, California, www.accelrys.com)
installed on a Silicon Graphics Octane2 desktop workstation
equipped with a dual 600 MHz MIPS R14000 processor (1.0 GB
RAM) running the Irix 6.5 operating system. Structure drawing
was performed employing ChemDraw Ultra 6.0, which was installed
on a Pentium 4 PC.

4.1.2. Data Set. The structures of 122 HSL inhibitors (1-122,
Table 1, Figure 1) were collected from recently published
literature.7,10 Although the in vitro bioactivities of the collected
inhibitors were gathered from two separate articles and were
determined employing two bioassay methodologies, it was possible
to normalize their anti-HSL bioactivities based on the fact that
compound 59 was bioassayed by both methods. The bioactivities
were expressed as the concentrations of the test compounds that
inhibited the activity of HSL by 50% (IC50, nM). The logarithm of
measured IC50 (nM) values were used in the three-dimensional
quantitative structure activity analysis (3D-QSAR), thus correlating
the data linear to the free energy change.

In a few cases where the IC50 values of some compounds were
expressed as being higher than 1000 nM (e.g., 20, 21, 32, 35, 44,
46, 60, 83, 85, 90, and 91), we assumed that their IC50 values to be
equal to 1000 nM. Similarly, if a particular compound was reported
to be devoid of activity, we assumed it IC50 value to be equal to
3500 nM (4 logarithmic cycles away from the most potent inhibitor,
e.g., 22, 34, 40, 42, and 86). These assumptions are necessary to
allow pharmacophore modeling, statistical correlation, and QSAR
analysis. The logarithmic transformation of IC50 values should
minimize any potential errors resulting from such assumptions.

The two-dimensional (2D) chemical structures of the inhibitors
were sketched using ChemDraw Ultra and saved in MDL-molfile
format. Subsequently, they were imported into CATALYST,
converted into corresponding standard 3D structures, and energy
minimized to the closest local minimum using the molecular
mechanics CHARMm force field implemented in CATALYST. The

resulting 3D structures were utilized as starting conformers for
CATALYST conformational analysis.

4.1.3. Conformational Analysis. The molecular flexibilities of
the collected compounds were taken into account by considering
each compound as a collection of conformers representing different
areas of the conformational space accessible to the molecule within
a given energy range. Accordingly, the conformational space of
each inhibitor (1-122, Figure 1 and Table 1) was explored by
adopting the “best conformer generation” option within CATA-
LYST based on the generalized CHARMm force field implemented
in the program. Default parameters were employed in the confor-
mation generation procedure, i.e., a conformational ensemble was
generated with an energy threshold of 20 kcal/mol from the local
minimized structure, which has the lowest energy level and a
maximum limit of 250 conformers per molecule. This search
procedure will probably identify the best three-dimensional ar-
rangement of chemical functionalities, explaining the activity
variations among the training set.17

4.1.4. Pharmacophoric Hypotheses Generation. All 122
molecules with their associated conformational models were
regrouped into a spreadsheet. The biological data of the inhibitors
were reported with an “uncertainty” value of 3, which means that
the actual bioactivity of a particular inhibitor is assumed to be
situated somewhere in an interval ranging from one-third to three
times the reported bioactivity value of that inhibitor.21,23,25

Subsequently, four structurally diverse training subsets: sets A, B,
C, and D in Table 2, respectively, were carefully selected from the
collection for pharmacophore modeling. Typically, CATALYST
requires informative training sets that include at least 16 compounds
of evenly spread bioactivities over at least three-and-a-half loga-
rithmic cycles. Lesser training lists could lead to chance correlation
and thus faulty models.21,23,25

The selected training sets were utilized to conduct 16 modeling
runs to explore the pharmacophoric space of HSL inhibitors (Table
3). The exploration process included altering interfeature spacing
parameter (100 and 300 picometers) and the maximum number of
allowed features in the resulting pharmacophore hypotheses, i.e.,
they were allowed to vary from 4 to 5 for the first and the third

Table 8. Training Subset F Used for Adding Excluded Spheres for Hypo4/9 Using HIPHOP-REFINE Module of CATALYST

compda
IC50

(nM)
principal

value MaxOmitFeatb compda
IC50

(nM)
principal

value MaxOmitFeatb

113 2.82 2 0 82 200 0 1
114 3.00 2 0 83 >1000 0 1
115 1.09 2 0 85 >1000 0 1
116 7.06 2 0 86 N/Ac 0 1
117 1.76 2 0 87 460 0 1
118 12.35 2 0 89 326 0 1
119 4.41 2 0 90 >1000 0 1
120 5.29 2 0 91 >1000 0 1
13 71 0 1 97 882.35 0 1
15 55 0 1 103 882.35 0 1
22 N/Ac 0 1 107 70.59 0 1
29 408 0 1 108 158.82 0 1
32 >1000 0 1 112 882.35 0 1
33 180 0 1 10 14.00 0 2
34 N/Ac 0 1 12 11.00 0 2
25 >1000 0 1 20 >1000 0 2
44 >1000 0 1 21 >1000 0 2
45 60 0 1 28 111 0 2
48 >65 0 1 38 240 0 2
51 67 0 1 39 1400 0 2
52 52 0 1 40 N/Ac 0 2
54 62 0 1 41 15 0 2
60 >1000 0 1 42 N/Ac 0 2
68 102 0 1 43 72 0 2
76 37 0 1 46 >1000 0 2
77 160 0 1 47 314 0 2
78 480 0 1 55 900 0 2
79 250 0 1 56 93 0 2
81 166 0 1 59 180 0 2

a Compounds’ numbers are as in Table 1 and Figure 1. b MaxOmitFeat: Maximum omitted features. c N/A: not active.
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runs and from 5 to 5 for the second and the fourth runs for each
training set, as shown in Table 3.

Pharmacophore modeling employing CATALYST proceeds
through three successive phases: the constructive phase, subtractive
phase, and optimization phase.21,23,25 During the constructive phase,
CATALYST generates common conformational alignments among
the most-active training compounds. Only molecular alignments
based on a maximum of five chemical features are considered. The
program identifies a particular compound as being within the most
active category if it satisfies eq 2.21,23,25

(MAct × UncMAct)-(Act ⁄ UncAct) > 0.0 (2)

where “MAct” is the activity of the most active compound in the
training set, “Unc” is the uncertainty of the compounds, and “Act”
is the activity of the training compounds under question. However,
if there are more than eight most-active inhibitors, only the top
eight are used.

In the subsequent subtractive phase, CATALYST eliminates
some hypotheses that fit inactive training compounds. A particular
training compound is defined as being inactive if it satisfies eq
3:21,23,25

log(Act)- log(MAct) > 3.5 (3)

However, in the optimization phase, CATALYST applies fine
perturbations in the form of vectored feature rotation, adding new
feature and/or removing a feature, to selected hypotheses that
survived the subtractive phase, in an attempt to find new models

of enhanced bioactivity/mapping correlation, i.e., improved 3D-
QSAR properties.

Table 2 shows the most active, least active, and intermediately
active compounds of each training subset as categorized by eqs 2
and 3.

Eventually, CATALYST selects the highest-ranking models (10
by default) and presents them as the optimal pharmacophore
hypotheses resulting from the particular automatic modeling run.
Our pharmacophore exploration efforts (16 automatic runs, Tables
2 and 3) culminated in 160 pharmacophore models of variable
qualities.

4.1.5. Assessment of the Generated Hypotheses. When gen-
erating hypotheses, CATALYST attempts to minimize a cost
function consisting of three terms: weight cost, error cost, and
configuration cost.17,21-25 Weight cost is a value that increases as
the feature weight in a model deviates from an ideal value of 2.
The deviation between the estimated activities of the training set
and their experimentally determined values adds to the error cost.
The activity of any compound can be estimated from a particular
hypothesis through eq 4:17

log(Estimated Activity)) I+ Fit (4)

where I ) the intercept of the regression line obtained by plotting
the log of the biological activity of the training set compounds
against the Fit values of the training compounds. The Fit value for
any compound is obtained automatically employing eq 5:17

Table 9. Hit Molecules Captured by Hypo8/7 and Hypo4/9 and Their Corresponding QSAR Estimates from eq 6 and Their in Vitro Bioactivities

fit values againstb QSAR estimatesc actual affinitiesd

hit compda name or NCI code Hypo8/7 Hypo4/9 log(1/IC50) IC50 (nM) % inhibition at 1 or 10 µM IC50 (µM)

123 NCI 58425 11.22 7.20 1.85 0.014 64e 0.21 (0.99g)
124 NCI 86895 10.54 5.45 0.94 0.114 15f

125 NCI 107527 10.92 7.33 0.60 0.250 31f

126 NCI 109483 9.71 6.47 -1.07 11.770 24f

127 NCI 133699 10.66 7.63 1.30 0.050 52f 5.00 (0.90g)
128 NCI 139606 8.70 7.59 1.19 0.065 15e

129 NCI 159878 9.70 7.80 -1.17 14.64 45e 2.98 (0.94g)
130 NCI 165451 6.89 5.91 0.29 0.513 2f

131 NCI 177967 10.32 7.45 0.36 0.433 29f

132 NCI 268685 5.09 7.47 2.00 0.010 67e 0.51 (0.76g)
133 NCI 282461 9.57 7.60 0.73 0.187 30f

134 NCI 293836 10.70 6.25 0.09 0.805 24e

135 NCI 343540 10.10 7.00 1.66 0.022 24f

136 NCI 608052 8.32 8.02 1.47 0.034 26f

137 NCI 675782 9.53 7.08 -0.54 3.500 27e

138 NCI 16296 0 5.08 1.37 0.043 9e

139 NCI 16962 0 6.76 1.23 0.059 12e

140 NCI 21442 0 7.18 1.12 0.076 21e

141 NCI 23869 0 4.73 1.04 0.092 12f

142 NCI 23872 0 4.70 1.16 0.069 24f

143 NCI 203307 3.21 4.74 1.40 0.040 3f

144 NCI 57653 0 4.08 0.77 0.170 23e

145 NCI 80427 0 5.56 1.25 0.056 14f

146 NCI 117769 0 6.22 0.91 0.122 23f

147 NCI 177999 10.16 0.94 1.41 0.039 10f

148 bifenox 10.63 4.08 1.84 0.015 60e 0.43 (0.98g)
149 chlorfenson 3.38 7.57 3.15 0.001 26f

150 esfenvalerate 8.43 7.18 -1.04 10.900 33e

151 fenvalerate 7.79 6.81 -0.76 5.690 37e

152 fenpropathrin 7.69 6.61 -1.18 14.990 35e

153 ethiofencarb 9.10 5.33 -0.94 8.660 52f 0.37 (0.99g)
154 silafluofen 10.95 1.73 0.02 0.950 6e

155 oxybenzoneh 3.22 6.62 2.30 0.005 44f 3.25 (0.98g)
156 capsaicin 6.53 3.55 -0.68 4.780 33f

157 naproxen 8.88 0 1.28 0.053 64f 1.20 (0.99g)
158 dibenzoylmethane 0 5.15 2.40 0.004 28f

159 benzyl benzoate 0 3.92 1.64 0.023 66f 1.10 (0.96g)
a Hits shown in Figure 5. b Best-fit values against each binding hypothesis calculated by eq 5. c QSAR estimates from eq 1. d In vitro enzyme inhibition.

Each value (percent inhibition or IC50) represents the average of at least three measurements. e % Inhibition at 1 µM inhibitor concentration. f % Inhibition
at 10 µM inhibitor concnetration. g This value represents the correlation coefficient of the corresponding dose-response line at three concentrations.
h Oxybenzone: 2-hydroxy-4-methoxybenzophenone.
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Fit)∑mapped hypothesis features × W[1-∑(disp ⁄ tol)2]
(5)

where ∑mapped hypothesis features represents the number of
pharmacophore features that successfully superimpose (i.e., map
or overlap with) corresponding chemical moieties within the fitted
compound, W is the weight of the corresponding hypothesis feature
spheres. This value is fixed to 1.0 in CATALYST-generated models.
disp is the distance between the center of a particular pharmacoph-
oric sphere (feature centroid) and the center of the corresponding
superimposed chemical moiety of the fitted compound; tol is the
radius of the pharmacophoric feature sphere (known as Tolerance,
equal to 1.6 Å by default). ∑(disp/tol)2 is the summation of (disp/
tol)2 values for all pharmacophoric features that successfully
superimpose corresponding chemical functionalities in the fitted
compound.17

The third term, i.e., the configuration cost, penalizes the
complexity of the hypothesis. This is a fixed cost, which is equal
to the entropy of the hypothesis space. The more the numbers of
features (a maximum of five) in a generated hypothesis, the higher
is the entropy with subsequent increase in this cost. The overall
cost (total cost) of a hypothesis is calculated by summing over the
three cost factors. However, error cost is the main contributor to
total cost.

CATALYST also calculates the cost of the null hypothesis, which
presumes that there is no relationship in the data and that
experimental activities are normally distributed about their mean.
Accordingly, the greater the difference from the null hypothesis
cost, the more likely that the hypothesis does not reflect a chance
correlation. In a successful automatic modeling run, CATALYST
ranks the generated models according to their total costs.17

An additional approach to assess the quality of CATALYST-
HYPOGEN pharmacophores is to cross-validate them using the
Cat.Scramble program implemented in CATALYST. This validation
procedure is based on Fischer’s randomization test.33 In this
validation test, we selected a 95% confidence level, which instructs
CATALYST to generate 19 random spreadsheets by the Cat.Scram-
ble command. Subsequently, CATALYST-HYPOGEN is chal-
lenged to use these random spreadsheets to generate hypotheses
using exactly the same features and parameters used in generating
the initial unscrambled hypotheses.41 Success in generating phar-
macophores of comparable cost criteria to those produced by the
original unscrambled data reduces the confidence in the training
compounds and the unscrambled original pharmacophore models.
On the basis of Fischer randomization criteria, only 71 pharma-
cophores exceeded the 85% significance threshold for subsequent
processing (clustering and QSAR analyses).

4.1.6. Clustering of the Generated Pharmacophore Hypoth-
eses. The successful models (71) were clustered into 14 groups
utilizing the hierarchical average linkage method available in
CATALYST. Subsequently, the highest-ranking representatives, as
judged based on their significance F-values, were selected to
represent their corresponding clusters in subsequent QSAR model-
ing. Table 4 shows information about representative pharmacoph-
ores including their pharmacophoric features, success criteria, and
differences from corresponding null hypotheses. The table also
shows the corresponding Cat.Scramble confidence levels for each
representative pharmacophore.

4.1.7. QSAR Modeling. A subset of 99 compounds from the
total list of inhibitors (1-122, Table 1 and Figure 1) was utilized
as a training set for QSAR modeling. However, because it is
essential to access the predictive power of the resulting QSAR
models on an external set of inhibitors, the remaining 23 molecules
(ca. 20% of the data set) were employed as an external test subset
for validating the QSAR models. The test molecules were selected
as follows: the 122 inhibitors were ranked according to their IC50

values, and then every fifth compound was selected for the test set
starting from the high-potency end. This selection considers the
fact that the test molecules must represent a range of biological
activities similar to that of the training set. The selected test
inhibitors are: 3, 4, 12, 20, 23, 30, 36, 39, 53, 54, 57, 59, 60, 61,
86, 89, 98, 99, 104, 105, 106, 113, and 118 (marked with footnote
a in Table 1, Figure 1).

The logarithm of measured 1/IC50 (nM) values were used in
QSAR, thus correlating the data linear to the free energy change.
The chemical structures of the inhibitors were imported into
CERIUS2 as standard 3D single conformer representations in SD
format. Subsequently, different descriptor groups were calculated
for each compound employing the C2.DESCRIPTOR module of
CERIUS2. The calculated descriptors included various simple and
valence connectivity indices, electrotopological state indices, and
other molecular descriptors (e.g., logarithm of partition coefficient,
polarizability, dipole moment, molecular volume, molecular weight,
molecular surface area, etc.).34 The training compounds were fitted
(using the best-fit option in CATALYST)17 against the representa-
tive pharmacophores (14 models, Table 4), and their fit values were
added as additional descriptors. The fit value for any compound is
obtained automatically via eq 5.17

Genetic function approximation (GFA) was employed to search
for the best possible QSAR regression equation capable of
correlating the variations in biological activities of the training
compounds with variations in the generated descriptors, i.e., multiple
linear regression modeling (MLR). GFA techniques rely on the
evolutionary operations of “crossover and mutation” to select
optimal combinations of descriptors (i.e., chromosomes) capable
of explaining bioactivity variation among training compounds from
a large pool of possible descriptor combinations, i.e., chromosomes
population. However, to avoid overwhelming GFA-MLR with a
large number of poor descriptor populations, we removed lowest-
variance descriptors (20%) prior to QSAR analysis.

Each chromosome is associated with a fitness value that reflects
how good it is compared to other solutions. The fitness function
employed herein is based on Friedman’s “lack-of-fit” (LOF).34

Our preliminary diagnostic trials suggested the following optimal
GFA parameters: explore linear, quadratic, and spline equations at
mating and mutation probabilities of 50%, population size ) 500,
number of genetic iterations ) 30000, and lack-of-fit (LOF)
smoothness parameter ) 1.0. However, to determine the optimal
number of explanatory terms (QSAR descriptors), it was decided
to scan and evaluate all possible QSAR models resulting from 10
to 24 explanatory terms.

All QSAR models were validated employing leave one-out cross-
validation (rLOO

2 ), bootstrapping (rBS
2 ), and predictive r2 (rPRESS

2 )
calculated from the test subsets. The predictive rPRESS

2 is defined
as:

rPRESS
2 ) SD-PRESS ⁄ SD (6)

Figure 5. Chemical structures of the tested highest-ranking hits (as suggested by the best QSAR model, eq 1).
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where SD is the sum of the squared deviations between the
biological activities of the test set and the mean activity of the
training set molecules, and PRESS is the squared deviations between
predicted and actual activity values for every molecule in the test
set.

Descriptor-scanning identified several high-quality QSAR mod-
els, of which model C (Table 5) was selected as the best model to
predict the inhibitory actions of our in silico hits. Two pharma-
cophore hypotheses emerged in this model, namely Hypo8/7 and
Hypo4/9. Table 6 shows the three-dimensional coordinates of the
two pharmacophores, while Figures 3 and 4 show the pharmacoph-
oric features of the two models and how they map training
compound 115 (IC50 ) 1.09 nM) and the most potent hit compound
123 (IC50 ) 0.214 µM). Figure 2 shows the plots of experimental
versus fitted (training set) and predicted (testing set) HSL inhibitory
bioactivities calculated from the QSAR model C (Table 5).

4.1.8. Addition of Exclusion Volumes. To account for the steric
constrains of the binding pocket, we decided to decorate Hypo8/7
and Hypo4/9 with exclusion volumes employing HIPHOP-REFINE
module of CATALYST. HIPHOP-REFINE uses inactive training
compounds to construct excluded volumes that resemble the steric
constrains of the binding pocket. It identifies spaces occupied by
the conformations of inactive compounds and free from active ones.
These regions are then filled with excluded volumes.31

Because each pharmacophore resembles a separate binding mode,
it was decided to select two separate training subsets for constructing
appropriate exclusion spheres around Hypo8/7 and Hypo4/9, namely
subsets E and F, respectively (Tables 7 and 8, respectively).

In HIPHOP-REFINE, the user defines how many molecules must
map completely or partially to the hypothesis via the principal and
maximum omitted features (MaxOmitFeat) parameters. Active
compounds are normally assigned MaxOmitFeat parameter of zero
and principal value of 2 to instruct the software to consider all
their chemical moieties in pharmacophore modeling and to fit them
against all the pharmacophoric features of a particular hypothesis.
On the other hand, inactive compounds are allowed to miss one
(or two) features by assigning them a MaxOmitFeat of 1 (or 2)
and principal value of zero.

We decided to consider 3.5 nM as an appropriate activity/
inactivity threshold. Accordingly, inhibitors of IC50 values e3.5
nM were regarded as “actives” and were assigned principal and
MaxOmitFeat values of 2 and 0, respectively, with few excep-
tions. On the other hand, inhibitors of IC50 > 3.5 nM were
considered inactive and were assigned principal values of zero.31

However, each inactive compound was carefully evaluated to
assess whether its low potency is attributable to missing one or
more pharmacophoric features, i.e., compared to active com-
pounds, or related to possible steric clashes within the binding
pocket, or due to both factors, i.e., the MaxOmitFeat parameter
was set to 1 or 2. HIPHOP-REFINE was configured to allow a
maximum of 100 exclusion spheres to be added to the generated
pharmacophoric hypotheses. Tables 7 and 8 show the training
compounds employed in this step and their corresponding
principal and MaxOmitFeat parameters.

4.1.9. In Silico Screening for New HSL Inhibitors. The
sterically refined versions of Hypo4/9 and Hypo8/7 were employed
as 3D search queries to screen two 3D flexible structural databases,
namely NCI list of compounds and our in-house built database of
known drugs and agrochemicals. Screening was performed employ-
ing the “Best Flexible Database Search” option implemented within
CATALYST. Hits retrieved from the NCI database were filtered
using Lipinski’s and Veber’s rules.

Hits from both searches were fitted against the two pharma-
cophores using the “best fit” option within CATALYST. The fit
values together with the relevant molecular descriptors of each hit
were substituted in the optimal QSAR eq 1. The highest ranking
molecules based on QSAR predictions were acquired and tested in
vitro. Table 9 shows their QSAR-predictions and experimental
bioactivities.

4.2. In Vitro Experimental Studies. 4.2.1. Materials. Wistar
male rats, weighing between 140-200 g and fed ad libitum with
standard feed and water were cared for in the animal laboratory at
faculty of Pharmacy at the University of Jordan. Materials were
purchased from corresponding companies (in brackets) and were
used in the experimentation without further purification: Krebs
Ringer bicarbonate (KRB, Sigma, USA), bovine serum albumin
(BSA, Sigma, USA), dimethyl sulfoxide (DMSO, BDH Laboratory
Supplies, England), Tris base (Promega Corporation, USA), col-
lagenase (Sigma, USA), protease inhibitors tablet (SIGMAFAST,
Sigma, USA), p-nitrophenyl butyrate (PNPB, Sigma, USA), dithio-
erythritol (DTT, Fluka, Switzerland), bifenox (Riedel-de Haen,
Germany), chlorfenson (Riedel-de Haen, Germany), esfenvalerate
(Riedel-de Haen, Germany), fenvalerate (Riedel-de Haen, Ger-
many), fenpropathrin (Riedel-de Haen, Germany), ethiofencarb
(Riedel-de Haen, Germany), silafluofen (Riedel-de Haen, Germany),
oxybenzone (Riedel-de Haen, Germany), capsaicin (Sigma, USA),
naproxen (Fluka, USA), dibenzoylmethane (Fluka, Germany),
benzyl benzoate (Medex, England). NCI hits were kindly donated
from the National Cancer Institute.

4.2.2. Extraction of the HSL Enzyme. Isolated fat cells were
extracted from rat epididymal adipose tissues as described earlier.42

Briefly, Wistar male rats were sacrificed by cervical dislocation,
and their epididymal fat pads were removed quickly and rinsed
several times in normal saline. The tissue was weighed and minced
into small pieces and placed in a flask. The resulting mass was
treated as follows: for each 1.0 g of tissue, 3 mL of KRB (pH 7.4)
supplemented with 4% BSA were added, followed by 10 mg of
collagenase. The mixture was incubated and agitated in a metabolic
shaker (Shaking Incubator, Daiki Scientific Corporation) over 2 h
at 37 °C. Subsequently, fat cells were liberated from the tissue
fragments by gentle stirring with a rod.

The resulting suspension was centrifuged for 1 min at 400g at
20 °C. Fat cells floated to the surface while stromal-vascular cells
settled at the bottom. Stromal-vascular cells were removed by
aspiration. Fat cells were decanted and washed by suspending them
in 10 mL of warm (37 °C) KRB-BSA solution followed by
centrifugation (for 1 min at 400g at 20 °C) and a second round of
removing stromal-vascular cells by aspiration. This washing
procedure was repeated three times.

HSL was extracted from epididymal fat cells as reported earlier.43

Briefly, 1 mL of suspended fat cells (in KRB-BSA solution) was
further diluted by 2.5 mL KRB-BSA and incubated at 37 °C for
30 min. Subsequently, the suspension was centrifuged at 100g for
1 min to separate the infranatant from the fat cells.

For each 1.0 mL of suspended fat cells, a 1.125 mL homogeniza-
tion buffer (each 100 mL prepared from 50 mM Tris-HCl, pH 7.0,
250 mM sucrose, and 1 crushed protease inhibitor tablet) was added
and the mixture was manually agitated 20 times. The homogenate
was centrifuged at 4540g and 4 °C over 10 min. Subsequently,
250 µL of diethyl ether was added to the homogenate and abruptly
shaken and centrifuged at 1200g over 5 min at 4 °C. The upper
ether layer was aspirated. The subsequent supernatant was used as
HSL extract. HSL extract aliquots (0.5 mL) were stored in Epindruff
tubes at -80 °C for later use.

4.2.3. Preparation of Hit Compounds for In Vitro Assay.
The tested compounds were provided as dry powders in variable
quantities (5 mg to 100 g). They were initially dissolved in DMSO
to give stock solutions of 20 or 50 mM. Subsequently, they were
diluted to the required concentrations with phosphate buffer (pH
7.25; 0.1 M NaH2PO4; 0.9% NaCl and 1.0 mM dithioerythritol)
for enzymatic assay.

4.2.4. Quantification of HSL Activity in a Spectrophotomet-
ric Assay. The lipase activity of HSL was quantified by a
colorimetric assay that measures the release of p-nitrophenol as
previously described.12 However, p-nitrophenyl butyrate (PNPB)
was employed as HSL substrate at 10 µM in the enzymatic assays
instead of 5 mM.12 HSL extract (0.10 mL) was added to the reaction
mixtures. The volume was completed to 1 mL using phosphate
buffer before measuring the solution absorbances spectrophoto-
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metrically at λ of 400 nm at three time points: 1, 3, and 6 min. The
reactions were maintained at 37 °C.

4.2.5. HSL Inhibition by Hit Compounds. The inhibition of
HSL lipase activity by hit compounds was measured using the
spectrophotometric assay described above. HSL was preincubated
with 10 µM or 1 µM of each particular hit compound for 30 min
at 37 °C before adding the substrate. The final concentration of
DMSO did not exceed 1.0%. The percentage of residual activity
of HSL was determined for each compound by comparing the lipase
activity of HSL with and without the compound. The concentration
required to give 50% inhibition (IC50) was determined for the nine
compounds having the best inhibitory activities. HSL was prein-
cubated with different concentrations of the selected compounds
(123, 127, 129, 132, 148, 153, 155, 157, and 159, Table 9) and the
percentages of residual activity of HSL data were used to evaluate
the IC50 values.
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